jueves, 1 de mayo de 2025

sábado, 26 de abril de 2025

SEMANA 15- TALLER DE RECUPERACION PARA ESTUDIANTES QUE NO ALCANZARON LOS LOGROS EN EL PRIMER PERÍODO.


Taller de recuperación primer período 2024 grado séptimo _____

Nombre del estudiante_________________________________________________________

Fecha________________________________________ Grado__________

Observaciones: Debe realizar el taller en hojas de block con todos los procedimientos. Luego debe estudiar muy bien el taller ya que se hará un examen escrito del mismo; también debe ponerse al día en los cuadernos de matemáticas y geometría.

Tiene dos semanas a partir de la fecha de entrega del taller de recuperación. 

1) Utiliza números enteros para expresar el valor numérico de las siguientes afirmaciones:

a) Un helicóptero vuela a 4.500 metros de altura.         B) Pitágoras nació en el año 582 A.C

c) En la Antártida se registró una temperatura de 12°c bajo cero.

d) Un pez se encuentra a una profundidad de 6 metros de profundidad.

e) Me pagaron 460.000 pesos que me debían.

2) Hallar el valor numérico de a+ b-c x (a – a - a + c)  

Si a=-10; b= 5; c=-3. Recuerde hacer los procedimientos.

3) Resuelva paso a paso el siguiente polinomio eliminando signos de agrupación:

{- 8+11- [-5 – 6 + 8 + (- 3 – 4 + 20) - (- 10 + 9 - 6)] + 18}

4) Resuelva las siguientes multiplicaciones de números enteros:

a) -9 x (-2) x (-3) =              b) 5 x (-3) x (-2) =               c) -9 x (-5) x (-2) =

5) Resuelva las siguientes divisiones de números enteros:

a) (-100): (-50): (-2) =        b) 90: (-10): (-3) =              c) -80: (-20): 2 =

6) Sume o reste números enteros según el caso:

a) -3-6-5-8=          b) -7+8-3+9-15=          c) 9+12-5-8+2+10 =

7) Empleando el transportador, mida los siguientes ángulos y escriba su respectivo nombre de acuerdo a su medida:

a) 43°      b) 90°      c) 250°      d) 180°      d) 192°      e)360°     f) 113°      

8) encuentre el complemento o el suplemento de los siguientes ángulos:

a) 35°      b) 92°  

9) Calcule el área de los siguientes triángulos: cuadriláteros (Hacer procedimientos completos y escribir la fórmula en cada caso)




 









10) Hallar el área de los siguientes cuadriláteros (Hacer procedimientos completos y escribir la fórmula en cada caso)













11) Hallar el perímetro del terreno mostrado en la figura:

 


 

 










viernes, 25 de abril de 2025

SEMANA 14 ---TALLER 8: POTENCIACIÓN DE NÚMEROS ENTEROS---TALLER : RADICACIÓN DE NÚMEROS ENTEROS.

 TALLER N°   8  Tema: Propiedades de la potenciación  


1. Observe este ejemplo para resolver los ejercicios: Ejemplo: ( 2)³ = 2 x 2 x 2

2. (Puedes usar calculadora para resolver)


3. Observe el ejemplo para resolver los ejercicios:



4. Tenga en cuenta el ejemplo y resuelva:

5. Resuelva: 

6. Resuelve aplicando la propiedad de la potenciación "producto de potencias de igual base"


jueves, 20 de marzo de 2025

SEMANA 11-12-POTENCIACIÓN DE ENTEROS. PROPIEDADES






Qué es una potencia de números enteros?

La potencia es la expresión abreviada de una multiplicación en que todos los factores son iguales. 

    a = a · a · a · … · a

El producto se hace n veces.

La base, a, es el factor que se repite.
El exponente, n, indica el número de veces que se repite la base.
La potencia es el resultado.

Por ejemplo:

a)     24 = 2 · 2 · 2 · 2 = 16

b)     02 = 0 · 0 = 0

c)     40 = 1 (este es un caso especial, ya que no podemos multiplicar un número por sí                        mismo 0 veces)

d)     35 = 3 · 3 · 3 · 3 · 3 = 243

e)     19 = 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 1

Veamos que pasa cuando la base es un número negativo. 

1) Si la base es negativa y el exponente es par, el resultado( potencia) es positivo. 
     Ejemplos:
                      (-3)2 = 9 porque (-3) . (-3) = 9
                      (-2)8 = 256 porque (-2) · (-2) · (-2) ·(- 2) ·(- 2) · (-2) · (-2) ·(- 2) = 256

2) Si la base es negativa y el exponente es impar, el resultado( potencia) es negativo.
     Ejemplos:
                      (-3)3 =- 27 porque ( -3) . (-3) . (-3) = -27
                      (-2)9 = -512 porque (-2) · (-2) · (-2) ·(- 2) ·(- 2) · (-2) · (-2) ·(- 2) . (-2) = - 512

3)  Si la base es positiva y el exponente es par o impar, el resultado( potencia) es positivo.
     Ejemplos:
                       28 = 256 Porque 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 256
                       29 = 512  Porque 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2. 2 = 512

4) Si la base es negativa y está elevada a un exponente par, pero esta base va fuera de un paréntesis, el resultado es negativo. Ejemplo: 
                                                                       -28 = -  2 ·- 2 · - 2 ·-  2 ·-  2 · - 2 · - 2 · - 2 = - 256 
Pero,  Si la base es negativa y está elevada a un exponente par, pero esta base va dentro de un paréntesis, el resultado es positivo. Ejemplo:
                                                             (-2)8 = (-2) · (-2) · (-2) ·(- 2) ·(- 2) · (-2) · (-2) ·(- 2) = 256
Como podes observar  -2no es igual a (-2)8  

Aquí puedes ver que el exponente 8 es sólo para el número 2 y no para el signo menos(-), por ello el resultado es negativo. En cambio cuando escribimos -2 dentro del paréntesis  y escribimos el exponente ocho tanto para la base como para el signo menos, dicho exponente afecta tanto al signo como al número.

DEBEMOS TENER EN CUENTA LAS SIGUIENTES REGLAS:

1)  Las potencias de exponente par son siempre positivas.
(+)par = +
(−)par = +

2) Las potencias de exponente impar tienen el mismo signo de la base.
(+)impar = +
(−)impar = −


T

 Propiedades de las potencias de números enteros


1) La potencia de exponente 0 es igual a 1: 
                                           Todo número elevado al exponente cero, es igual a 1. Ejemplo:


     



















2) Potencia de base cero: 
    

Ejemplo:


















3) Exponente 1: 
                   Todo número elevado al exponente 1,  es igual a ese mismo número. Ejemplo: 
















4) Producto de potencias con la misma base: 
                                                                      Para multiplicar potencias que tengan igual base, escribimos la misma base y sumamos los exponentes. Ejemplo:
     









= 128






5) División de potencias con la misma base:
                                                        Para dividir potencias que tengan igual base, escribimos la misma base y restamos los exponentes. Ejemplo:
































6) Potencia de exponente negativo: 





































7. Potencia de una potencia






































8) Potencia de un producto: Sacamos las bases y las elevamos al exponente indicado,                                                          hallamos las potencias y multiplicamos. Llamada también distributiva de la multiplicación.





































Resumamos:

PRIMERA FORMA: (−2 · 3)³
                                 (−6)³= -216

SEGUNDA FORMA: (−2 · 3)³ =
                                    -8 X 27 = −216
                                                 Sacamos las bases y las elevamos al exponente indicado, hallamos las potencias y multiplicamos.

9) Cociente de una potencia:
Sacamos las bases, las elevamos al exponente indicado, hallamos las potencias y dividimos.





































RESUMAMOS: 

PRIMERA FORMA: (−6 : 3)³ =
                                       (-2)³ = -8

SEGUNDA FORMA:(−6 : 3)³ =

                         -216 : 27 = −8          Sacamos las bases y las elevamos al exponente indicado, hallamos las potencias y dividimos.


miércoles, 19 de marzo de 2025

SEMANA 10: TALLER 7: POTENCIACIÒN DE NÙMEROS ENTEROS TALLER 8: PROPIEDADES DE LA POTENCIACIÒN

 18 AL 21 DE MARZO

OBJETIVO: Entender la potenciación de números enteros y manejar sus propiedades para la resolución de los ejercicios.






Qué es una potencia de números enteros?

La potencia es la expresión abreviada de una multiplicación en que todos los factores son iguales. 

    a = a · a · a · … · a

El producto se hace n veces.

La base, a, es el factor que se repite.
El exponente, n, indica el número de veces que se repite la base.
La potencia es el resultado.

Por ejemplo:

a)     24 = 2 · 2 · 2 · 2 = 16

b)     02 = 0 · 0 = 0

c)     40 = 1 (este es un caso especial, ya que no podemos multiplicar un número por sí                        mismo 0 veces)

d)     35 = 3 · 3 · 3 · 3 · 3 = 243

e)     19 = 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 1

Veamos que pasa cuando la base es un número negativo. 

1) Si la base es negativa y el exponente es par, el resultado( potencia) es positivo. 
     Ejemplos:
                      (-3)2 = 9 porque (-3) . (-3) = 9
                      (-2)8 = 256 porque (-2) · (-2) · (-2) ·(- 2) ·(- 2) · (-2) · (-2) ·(- 2) = 256

2) Si la base es negativa y el exponente es impar, el resultado( potencia) es negativo.
     Ejemplos:
                      (-3)3 =- 27 porque ( -3) . (-3) . (-3) = -27
                      (-2)9 = -512 porque (-2) · (-2) · (-2) ·(- 2) ·(- 2) · (-2) · (-2) ·(- 2) . (-2) = - 512

3)  Si la base es positiva y el exponente es par o impar, el resultado( potencia) es positivo.
     Ejemplos:
                       28 = 256 Porque 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 256
                       29 = 512  Porque 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2. 2 = 512

4) Si la base es negativa y está elevada a un exponente par, pero esta base va afuera de un paréntesis, el resultado es negativo. Ejemplo: 
                                                                       -28 = -  2 ·- 2 · - 2 ·-  2 ·-  2 · - 2 · - 2 · - 2 = - 256 
Pero,  Si la base es negativa y está elevada a un exponente par, pero esta base va dentro de un paréntesis, el resultado es positivo. Ejemplo:
                                                             (-2)8 = (-2) · (-2) · (-2) ·(- 2) ·(- 2) · (-2) · (-2) ·(- 2) = 256
Como podes observar  -2no es igual a (-2)8  

Aquí puedes ver que el exponente 8 es sólo para el número 2 y no para el signo menos(-), por ello el resultado es negativo. En cambio cuando escribimos -2 dentro del paréntesis  y escribimos el exponente ocho tanto para la base como para el signo menos, dicho exponente afecta tanto al signo como al número.

DEBEMOS TENER EN CUENTA LAS SIGUIENTES REGLAS:

1)  Las potencias de exponente par son siempre positivas.
(+)par = +
(−)par = +

2) Las potencias de exponente impar tienen el mismo signo de la base.
(+)impar = +
(−)impar = −


Propiedades de las potencias de números enteros

1) La potencia de exponente 0 es igual a 1: 
                                           Todo número elevado al exponente cero, es igual a 1. Ejemplo:


     



















2) Potencia de base cero: 
    

Ejemplo:


















3) Exponente 1: 
                   Todo número elevado al exponente 1,  es igual a ese mismo número. Ejemplo: 
















4) Producto de potencias con la misma base: 
                                                                      Para multiplicar potencias que tengan igual base, escribimos la misma base y sumamos los exponentes. Ejemplo:
     









= 128






5) División de potencias con la misma base:
                                                        Para dividir potencias que tengan igual base, escribimos la misma base y restamos los exponentes. Ejemplo:
































6) Potencia de exponente negativo: 





































7. Potencia de una potencia






































8) Potencia de un producto: Sacamos las bases y las elevamos al exponente indicado,                                                          hallamos las potencias y multiplicamos. Llamada también distributiva de la multiplicación.





































Resumamos:

PRIMERA FORMA: (−2 · 3)³
                                 (−6)³= -216

SEGUNDA FORMA: (−2 · 3)³ =
                                    -8 X 27 = −216
                                                 Sacamos las bases y las elevamos al exponente indicado, hallamos las potencias y multiplicamos.

9) Cociente de una potencia:
Sacamos las bases, las elevamos al exponente indicado, hallamos las potencias y dividimos.





































RESUMAMOS: 

PRIMERA FORMA: (−6 : 3)³ =
                                       (-2)³ = -8

SEGUNDA FORMA:(−6 : 3)³ =

                         -216 : 27 = −8          Sacamos las bases y las elevamos al exponente indicado, hallamos las potencias y dividimos.


Taller  7    Tema: Potenciación  Ver video: Potenciación

Hallar las siguientes potencias( escribirlas del numeral 1 al 17 entre paréntesis y negativas) y escribir como el producto de factores repetidos.















Tomado de:https://www.slideshare.net/slideshow/ejercicios-de-potenciacion-de-nmeros-enteros/6924761